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The scaling properties of the inverse moments of Wigner delay times are investigated in finite one-
dimensional �1D� random media with one channel attached to the boundary of the sample. We find that they
follow a simple scaling law which is independent of the microscopic details of the random potential. Our
theoretical considerations are confirmed numerically for systems as diverse as 1D disordered wires and optical
lattices to microwave waveguides with correlated scatterers.
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I. INTRODUCTION

The study of the statistical properties of Wigner delay
times has been a subject of intense research activity.1–14 The
Wigner delay time is defined as the energy derivative of the
total phase of the scattering matrix S, i.e., �W=
−i�� ln det S /�E, and can be interpreted as a time delay in
propagation of the peak of the wave packet due to scattering
interference, in comparison to a free wave packet propaga-
tion. Although most of the contemporary activity has been
focused in understanding the statistical properties of delay
times within chaotic mesoscopic systems,1,2 recently the in-
terest has shifted toward random scattering media exhibiting
Anderson localization3–11 including the most difficult case of
the Anderson metal-insulator transition.10–14 On the experi-
mental side,3–5 the statistics of scattering phases and delay
times have been measured in microwave experiments with
quasi-one-dimensional random samples, while on the theo-
retical side, the main effort has been to connect the statistical
properties of delay times with that of eigenfunctions.10–13

Establishing such a relation may open new exciting op-
portunities for measuring the statistical properties of
eigenfunctions15–24 via the experimentally accessible delay
times.

Specifically, using the powerful nonlinear � model
�NL�M� technique,11,12 an exact relation was found linking
the probability distribution of eigenfunction components
within a random medium to the distribution of Wigner delay
times in the same sample of length L, with one channel at-
tached at its bulk. This relation is exact on the level of the
NL�M and valid independent of the system size L �i.e., ir-
respective if we take the thermodynamic limit L→� or keep
L finite�.

However, one has to question the validity of mapping a
particular microscopic model of a disordered system onto the
NL�M. More specifically, this mapping is approximately
correct in the case of weak disorder and breaks down totally
for strong disorder. Another strict requirement is that the un-
derlying geometry allows for a diffusive process—this cer-
tainly is not the case for strictly one-dimensional �1D� ran-
dom media. Finally, NL�M calculations preassume that the
disorder potential is white noise, thus excluding the emerg-
ing family of disordered systems with imprinted correlations

in their potential.25–32 The above restrictions cast reasonable
doubts on the validity of NL�M predictions, as far as real-
istic systems are concerned, and call for testing by means of
a dedicated experiment or computer simulation.

It is the purpose of this paper to investigate the scaling
properties of moments of delay times and compare them with
the ones found for wave functions in cases where the condi-
tions for NL�M applicability are violated. To this end, we
will study various microscopic systems: �a� a 1D disordered
electronic system �modeled by an Anderson Hamiltonian�,
�b� a microwave system with long-range correlated scatterers
inside a waveguide �modeled by a Kronig-Penney model�,
and �c� cold atoms in a disordered optical lattice �modeled
again by a Kronig-Penney model with binary distribution�. In
all cases, we find that the inverse moments of delay times �L
in a disordered sample of length L follow a simple scaling
law which is independent of the microscopic properties be-
longing to the underlying physical system. Specifically, we
find that

�−q = f��−q�, �−q �
�ref

−q

��L
−q�

, �−q �
�ref

−q

���
−q�

, �1�

where q takes positive values and ��L� represents the average
�or typical� delay time over disorder realizations. The vari-
able �� represents the delay time of the L→� sample with
the same disordered potential. The variable �ref is the delay
time of a “reference” sample, corresponding to an “infinite”
localization length setup, with length L. The former quantity
incorporates the microscopic information of the system �i.e.,
disorder potential�, whereas �ref only depends on the infor-
mation of the finite sample length L, as well as the dimen-
sionality and the energy E at which the scattering experiment
is performed. Our numerical analysis indicates that the scal-
ing law �Eq. �1�� can take the model-independent form,

��L
−q��,E�� = ���

−q��,E�� + �ref
−q , �2�

where � is the disorder strength of the random potential. In
fact, our numerical data suggest that Eq. �2� is exact only for
q=1, while for higher q values, small deviations from the
linear behavior can be detected.
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We point out that a similar relation to Eq. �2� was found
for the scaling properties of wave function moments within a
closed disordered sample.15–17 The corresponding expression
involves the q�=q+1 wave function moment and reads

1

�lL
�q����,E��

=
1

�l�
�q����,E��

+
1

lref
�q��

, �3�

where lL
�q��=L�P�q�� / Pref

�q���1/�1−q�� are the various information

lengths of a sample with length L, P�q����n
L		n	2q� with

eigenfunction components 	n, l��� ,E� is the localization
length of the infinite sample with the same disordered

strength, and Pref
q� 
L with a prefactor defined by the refer-

ence geometry �1D periodic lattice in the cases studied here�.
For the special case q�=1, the corresponding information
length is equal to the entropic length defined by lL

�1�

=e /2 exp�−�n=1
L 		n	2 ln 		n	2�.

We initiate our analysis by recalling the notion of delay
times as originally proposed by Wigner and de Carvalho and
Nussenzveig.35,36 This is the time that a reflected particle is
delayed due to interaction with a scattering region. Now, we
recall that the q�=2 information length, lL

�2��� ,E�, �associated
with the inverse participation ratio� measures the “penetra-
tion” �localization� length inside a disordered sample before
the particle is reflected back �we are considering here the one
channel scattering setup�. The corresponding delay time due
to the scattering from the disordered sample is then given by
�L=2lL

�2� /v, where v is the group velocity of the wave packet
centered around energy E. Using this argument and substi-
tuting it for lL

�2� in Eq. �3�, we obtain Eq. �2� for q=1. In fact,
our numerical data �see below� indicate that Eq. �2� describes
to a good approximation higher q moments as well.

Below, we report our numerical results for various micro-
scopic models which support the scaling of Eq. �1�. Although
our presentation focuses on the first moment q=1, we have
found that higher moments follow the scaling law �Eq. �1��
equally well.

II. MICROSCOPIC MODELS AND UNIVERSALITY

A. 1D disordered electronic system

The standard model that describes a 1D disordered elec-
tronic sample is the tight-binding equation,

	n+1 + 	n−1 = �E�k� − Vn�	n, n = 1,2, ¯ ,L , �4�

where k is the incident wave number and 	n is the wave
function amplitude at the nth site. The on-site potential Vn
for 1
n
L is independently and identically distributed
with a box probability distribution, i.e., the Vn are uniformly
distributed on the interval �−� /2,� /2�.

We open the sample by attaching one channel to the first
site n=1. The Wigner delay time of a sample of length n
+1 is then evaluated with the use of the Hamiltonian map
approach7 through the following iteration relations:

�n+1 = Gn
−1��n +

1

sin k
� +

An

1 + �tan��n − k� + An�2

cot k

sin k
,

Gn = 1 + An sin�2��n − k�� + An
2 cos2��n − k� , �5�

where An=
Vn

sin k , and the scattering phase is given by

tan��n+1� = tan��n − k� + An. �6�

In Fig. 1, we report the delay times for the Anderson model
�Eq. �4��. The data are averaged over an ensemble of 104

realizations of the random potential and are plotted accord-
ing to the scaling �Eq. �1��. The value of ���

−q� was calculated
for a sample of length L=107, and its convergence was
checked by increasing the system size by an additional order,
i.e., L=108. The scaled data—for various L and disordered
strengths �—fall on a single curve, confirming the validity of
the theoretical prediction �Eq. �1��. Within the same figure,
we also report the corresponding scaled entropic lengths �see

solid red symbols� lL
�q�� /L versus the localization parameter

�=2l��� ,E� /L, in order to compare with the scaling law that
dictates the delay times. The agreement between information
lengths and delay times is evident, thus confirming that these
two quantities are directly related. In the inset of Fig. 1, we
also report our numerical results for the second moment, i.e.,
q=2. A nice agreement with the theoretical expectation �Eq.
�1�� is again quite evident.

B. Microwaves propagating in a 1D waveguide

The creation of frequency pass and/or stop bands sepa-
rated by mobility edges and their manipulation by imposing
appropriate correlations in the disordered potential26–31 have
recently gained considerable research interest due to their
immediate technological applications. One prominent theo-
retical suggestion26 was based on the introduction of long-
range correlations in the on-site disordered potential. The
theoretical predictions were further supported by subsequent
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FIG. 1. �Color online� Scaled inverse delay times �Eq. �1�� for
the Anderson model. Various symbols correspond to different dis-
ordered potentials �� 0.1,0.5,1 ,5 ,10� and 	E�k=���	1. Blue
hollow symbols denote delay time data for q=1. For comparison,

red solid symbols denote q�=2 information length data, i.e., lL
�q�� /L

versus �=2l��� ,E� /L. The dashed line is the result of the best fit
from Eqs. �12� and �13�. Inset: same as in the main figure but now
q=2 for delay times and q�=3 for information lengths.
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experimental microwave measurements,27 carried out in a
single-mode waveguide with correlated scatterers realized by
screws extending from a waveguide wall. By arranging the
lengths of the screws according to a predefined sequence,
correlated scattering arrangements could be realized leading
to predefined mobility edges. If the screws are approximated
by delta scatterers, the propagation of a single mode in the
waveguide can be described by the wave equation for the
Kronig-Penney model,

	��z� + E	�z� = �
n=−�

�

�n	�zn���z − nd� , �7�

where d is the distance between nearby scatterers, 	 is the
electric field of the TE mode, and the energy is given by E
=k2. We can rewrite the above equation in the discrete form
for 	n�	�zn=nd�,

	n+1 + 	n−1 = �2 cos�kd� − Unkd sin�kd��	n. �8�

One can split the potential Un into a mean � and a fluctuating
term �n, Un=�+�n. Equation �8� is then equivalent to the
tight-binding Eq. �4�, with energy E→2 cos k+k� sin k and
random potential Vn→k�n sin k.

By choosing the on-site potential as25,26

�n = � �
m=−�

�

�m�n+m, �9�

where �n+m is a random variable, uniformly distributed
within the interval �0,1�, and

�m = � � 2

�
��2 − �1�3/2, m = 0

1

m
��2 − �1

2�
�sin�2m�2� − sin�2m�1�� , m � 0,�

�10�

with �1=0.2�, �2=0.4�, and �=−0.1, it was argued that
mobility edges can be tailored at wave numbers kd /�
=0.38, 0.57, and 0.76. The experimental data27 �see blue line
�left axis� within the inset of Fig. 2 �Ref. 33�� did indeed
seem to confirm the theoretical predictions. However, vari-
ous questions still remain to be clarified—the most promi-
nent being the nature of the corresponding eigenstates and
how they are structurally affected by these potential correla-
tions.

With the help of the iteration relations �Eqs. �5� and �6��,
we have investigated the scaling properties of ��L

−1� for the
correlated model �Eqs. �7� and �9��. Two energies E from
both sides of the mobility edge k=0.57� have been chosen.
In Fig. 2, we report our numerical data by referring to the
scaling variables �−1 and �−1, defined in Eq. �1�. The data
correspond to various system sizes L�101 ,102 , . . . ,106 ,107

and disordered strengths �� 0.1,0.5,2.5,5�. The remark-
able agreement between the data from both sides of the “mo-
bility” edge confirms again the theoretical prediction �Eq.
�1�� and indicates clearly that the corresponding eigenfunc-
tions have the same structural properties, thus being unaf-
fected by the potential correlations. Using the scaling prop-

erties of the Wigner delay times, we are able to conclude that
k=0.57� does not correspond to any mobility edge separat-
ing extended from exponentially localized eigenstates.
Rather, in both energy regimes, the eigenstates are structur-
ally the same �i.e., exponentially localized�, albeit the local-
ization length is drastically different. This is reflected in the
overall scaling factor ���

−1� �used to scale the data according
to Eq. �1��, illustrated by the red circles �right axis� within
the inset of Fig. 2. Note that ��
 l� �see, for example, Ref.
7�. As we can see from Fig. 2, at the pass-band region, ���

−1�
is much smaller than that of the stop-band region; i.e., l� is
much larger in the former case but nonetheless remains finite
�a “true” transition would imply that ���

−1�
L−1, and thus by
increasing the system size, the scaling factor had to go to
zero�. This abrupt change in the magnitute of ���

−1� around
k
0.57� is a fingerprint of the correlations imposed to the
disordered potential. Nevertheless, after rescaling the data,
the universal scaling law �Eq. �1�� is again satisfied.

C. Disordered optical lattices

It was recently proposed in Ref. 34 that we can observe
Anderson localization of ultracold atoms scattered off a gas
of atoms of another species or internal state, randomly
trapped at the nodes of an optical lattice. Within this setup,
cooled vibrational ground-state atoms trapped at the nodes of
a periodic optical lattice act as �static� delta scatterers pro-
vided that the kinetic energy of the incoming particles is less
than the vibrational energy of the trapped scatterers, i.e.,

�2k2

2mincoming
���scatterer. The mathematical model that describes
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FIG. 2. �Color online� Scaled inverse delay times for micro-
waves propagating in 1D waveguide. The different symbols corre-
spond to energies 	E�k=0.5��	1, 	E�k=0.7��	�1 being on both
sides of the critical wave vector k=0.57�. A nice data collapse is
observed, indicating that in both cases, the statistical properties of
delay times �and thus the structural properties of wave functions�
are unaffected by the correlation and correspond to exponentially
localized wave functions; albeit the localization length for k=0.5�
is much larger than for k=0.7�. This is reflected in the overall
scaling parameter ���

−1�. The dashed line is the result of the best fit
from Eqs. �12� and �13�. Inset: the experimental transmission coef-
ficient showing pass and stop bands is displayed by the blue line
�left axis�. The values for ��inf

−1� are shown by the red circles �right
axis� �Ref. 33�.
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the motion of the incoming particle along the lattice direction
is the Kronig-Penney model �Eqs. �7� and �8��, in this case,
with binary on-site potential distribution. Localization is then
dependent on three parameters: wave vector k, disorder
strength �, and the filling factor p� �0,1�. The latter dictates
a binomial distribution of the on-site potential,

�n = �� , �n  p

0, �n � p ,
� �11�

where �n is a random number given by a uniform
distribution and � is the disorder strength.34 In the
numerical simulations presented in Fig. 3, we used dis-
order strengths �� 4.556,0.5� and filling factors p
� 0.01,0.025,0.05,0.1,0.9�. The larger disorder strength
corresponds to numerical values used in Ref. 34. The very
nice overlap of the scaled delay times is once more in excel-
lent agreement with the universality of the scaling law �Eqs.
�1� and �2��.

D. Universal behavior

It is illuminating to plot all our numerical data in the new
variables,

Y−q = ln� �−q

1 − �−q
�, X−q = ln��−q� . �12�

In these variables, the scaling for q=1 has an extremely
simple form,

Y−1 = a−1 + b−1X−1, �13�

with a−1�0 and b−1�1. The data for the scaling in variables
Y−1 ,X−1 are presented in Fig. 4. The remarkable result is that
the above simple scaling relation holds in a very large region

of the scaling parameter, �X−1�14. In fact, Eq. �13� is exact
only for q=1, corresponding to q�=2.15,16 However, for other
values of q, Eq. �13� is still a good approximation �see the
inset of Fig. 4 for the case q=2�. Placing Eq. �12� into Eq.
�13�, we find that

�−1

1−�−1
=�−1 �see the dashed lines in Figs.

1–3�. This takes the form �2� once we substitute for �−1 and
�−1 the expressions in Eq. �1�. In the inset of the same figure,
we also report the q=2 moment of delay times by making
use of the variables of Eq. �12�. The nice data collapse re-
confirms the validity of Eq. �13� where again a−2�0 and
b−2�1 �note, however, that for q=2, small deviations from
the straight line are evident around X−2�0�.

III. CONCLUSIONS

In conclusion, we have investigated the scaling properties
of inverse moments of Wigner delay times. We have shown
that they are dictated by the scaling law �Eq. �1��, which can
be rewritten in a more familiar way �Eq. �2��, resembling the
scaling relation for the information lengths of wave function
components. Our theoretical arguments have been tested in
various physical models where the applicability of the non-
linear � model is questionable, thus strongly supporting the
relation between wave function moments and inverse mo-
ments of Wigner delay times.
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